3.1.12 \(\int x^2 (b x+c x^2)^{3/2} \, dx\)

Optimal. Leaf size=134 \[ \frac {7 b^6 \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {b x+c x^2}}\right )}{512 c^{9/2}}-\frac {7 b^4 (b+2 c x) \sqrt {b x+c x^2}}{512 c^4}+\frac {7 b^2 (b+2 c x) \left (b x+c x^2\right )^{3/2}}{192 c^3}-\frac {7 b \left (b x+c x^2\right )^{5/2}}{60 c^2}+\frac {x \left (b x+c x^2\right )^{5/2}}{6 c} \]

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 134, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.294, Rules used = {670, 640, 612, 620, 206} \begin {gather*} -\frac {7 b^4 (b+2 c x) \sqrt {b x+c x^2}}{512 c^4}+\frac {7 b^2 (b+2 c x) \left (b x+c x^2\right )^{3/2}}{192 c^3}+\frac {7 b^6 \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {b x+c x^2}}\right )}{512 c^{9/2}}-\frac {7 b \left (b x+c x^2\right )^{5/2}}{60 c^2}+\frac {x \left (b x+c x^2\right )^{5/2}}{6 c} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2*(b*x + c*x^2)^(3/2),x]

[Out]

(-7*b^4*(b + 2*c*x)*Sqrt[b*x + c*x^2])/(512*c^4) + (7*b^2*(b + 2*c*x)*(b*x + c*x^2)^(3/2))/(192*c^3) - (7*b*(b
*x + c*x^2)^(5/2))/(60*c^2) + (x*(b*x + c*x^2)^(5/2))/(6*c) + (7*b^6*ArcTanh[(Sqrt[c]*x)/Sqrt[b*x + c*x^2]])/(
512*c^(9/2))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 612

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b + 2*c*x)*(a + b*x + c*x^2)^p)/(2*c*(2*p +
1)), x] - Dist[(p*(b^2 - 4*a*c))/(2*c*(2*p + 1)), Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x]
 && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && IntegerQ[4*p]

Rule 620

Int[1/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(1 - c*x^2), x], x, x/Sqrt[b*x + c*x^2
]], x] /; FreeQ[{b, c}, x]

Rule 640

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(a + b*x + c*x^2)^(p +
 1))/(2*c*(p + 1)), x] + Dist[(2*c*d - b*e)/(2*c), Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && NeQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rule 670

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(m + 2*p + 1)), x] + Dist[((m + p)*(2*c*d - b*e))/(c*(m + 2*p + 1)), Int[(d + e
*x)^(m - 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 -
b*d*e + a*e^2, 0] && GtQ[m, 1] && NeQ[m + 2*p + 1, 0] && IntegerQ[2*p]

Rubi steps

\begin {align*} \int x^2 \left (b x+c x^2\right )^{3/2} \, dx &=\frac {x \left (b x+c x^2\right )^{5/2}}{6 c}-\frac {(7 b) \int x \left (b x+c x^2\right )^{3/2} \, dx}{12 c}\\ &=-\frac {7 b \left (b x+c x^2\right )^{5/2}}{60 c^2}+\frac {x \left (b x+c x^2\right )^{5/2}}{6 c}+\frac {\left (7 b^2\right ) \int \left (b x+c x^2\right )^{3/2} \, dx}{24 c^2}\\ &=\frac {7 b^2 (b+2 c x) \left (b x+c x^2\right )^{3/2}}{192 c^3}-\frac {7 b \left (b x+c x^2\right )^{5/2}}{60 c^2}+\frac {x \left (b x+c x^2\right )^{5/2}}{6 c}-\frac {\left (7 b^4\right ) \int \sqrt {b x+c x^2} \, dx}{128 c^3}\\ &=-\frac {7 b^4 (b+2 c x) \sqrt {b x+c x^2}}{512 c^4}+\frac {7 b^2 (b+2 c x) \left (b x+c x^2\right )^{3/2}}{192 c^3}-\frac {7 b \left (b x+c x^2\right )^{5/2}}{60 c^2}+\frac {x \left (b x+c x^2\right )^{5/2}}{6 c}+\frac {\left (7 b^6\right ) \int \frac {1}{\sqrt {b x+c x^2}} \, dx}{1024 c^4}\\ &=-\frac {7 b^4 (b+2 c x) \sqrt {b x+c x^2}}{512 c^4}+\frac {7 b^2 (b+2 c x) \left (b x+c x^2\right )^{3/2}}{192 c^3}-\frac {7 b \left (b x+c x^2\right )^{5/2}}{60 c^2}+\frac {x \left (b x+c x^2\right )^{5/2}}{6 c}+\frac {\left (7 b^6\right ) \operatorname {Subst}\left (\int \frac {1}{1-c x^2} \, dx,x,\frac {x}{\sqrt {b x+c x^2}}\right )}{512 c^4}\\ &=-\frac {7 b^4 (b+2 c x) \sqrt {b x+c x^2}}{512 c^4}+\frac {7 b^2 (b+2 c x) \left (b x+c x^2\right )^{3/2}}{192 c^3}-\frac {7 b \left (b x+c x^2\right )^{5/2}}{60 c^2}+\frac {x \left (b x+c x^2\right )^{5/2}}{6 c}+\frac {7 b^6 \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {b x+c x^2}}\right )}{512 c^{9/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.15, size = 120, normalized size = 0.90 \begin {gather*} \frac {\sqrt {x (b+c x)} \left (\frac {105 b^{11/2} \sinh ^{-1}\left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {b}}\right )}{\sqrt {x} \sqrt {\frac {c x}{b}+1}}+\sqrt {c} \left (-105 b^5+70 b^4 c x-56 b^3 c^2 x^2+48 b^2 c^3 x^3+1664 b c^4 x^4+1280 c^5 x^5\right )\right )}{7680 c^{9/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2*(b*x + c*x^2)^(3/2),x]

[Out]

(Sqrt[x*(b + c*x)]*(Sqrt[c]*(-105*b^5 + 70*b^4*c*x - 56*b^3*c^2*x^2 + 48*b^2*c^3*x^3 + 1664*b*c^4*x^4 + 1280*c
^5*x^5) + (105*b^(11/2)*ArcSinh[(Sqrt[c]*Sqrt[x])/Sqrt[b]])/(Sqrt[x]*Sqrt[1 + (c*x)/b])))/(7680*c^(9/2))

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.35, size = 112, normalized size = 0.84 \begin {gather*} \frac {\sqrt {b x+c x^2} \left (-105 b^5+70 b^4 c x-56 b^3 c^2 x^2+48 b^2 c^3 x^3+1664 b c^4 x^4+1280 c^5 x^5\right )}{7680 c^4}-\frac {7 b^6 \log \left (-2 \sqrt {c} \sqrt {b x+c x^2}+b+2 c x\right )}{1024 c^{9/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[x^2*(b*x + c*x^2)^(3/2),x]

[Out]

(Sqrt[b*x + c*x^2]*(-105*b^5 + 70*b^4*c*x - 56*b^3*c^2*x^2 + 48*b^2*c^3*x^3 + 1664*b*c^4*x^4 + 1280*c^5*x^5))/
(7680*c^4) - (7*b^6*Log[b + 2*c*x - 2*Sqrt[c]*Sqrt[b*x + c*x^2]])/(1024*c^(9/2))

________________________________________________________________________________________

fricas [A]  time = 0.42, size = 214, normalized size = 1.60 \begin {gather*} \left [\frac {105 \, b^{6} \sqrt {c} \log \left (2 \, c x + b + 2 \, \sqrt {c x^{2} + b x} \sqrt {c}\right ) + 2 \, {\left (1280 \, c^{6} x^{5} + 1664 \, b c^{5} x^{4} + 48 \, b^{2} c^{4} x^{3} - 56 \, b^{3} c^{3} x^{2} + 70 \, b^{4} c^{2} x - 105 \, b^{5} c\right )} \sqrt {c x^{2} + b x}}{15360 \, c^{5}}, -\frac {105 \, b^{6} \sqrt {-c} \arctan \left (\frac {\sqrt {c x^{2} + b x} \sqrt {-c}}{c x}\right ) - {\left (1280 \, c^{6} x^{5} + 1664 \, b c^{5} x^{4} + 48 \, b^{2} c^{4} x^{3} - 56 \, b^{3} c^{3} x^{2} + 70 \, b^{4} c^{2} x - 105 \, b^{5} c\right )} \sqrt {c x^{2} + b x}}{7680 \, c^{5}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(c*x^2+b*x)^(3/2),x, algorithm="fricas")

[Out]

[1/15360*(105*b^6*sqrt(c)*log(2*c*x + b + 2*sqrt(c*x^2 + b*x)*sqrt(c)) + 2*(1280*c^6*x^5 + 1664*b*c^5*x^4 + 48
*b^2*c^4*x^3 - 56*b^3*c^3*x^2 + 70*b^4*c^2*x - 105*b^5*c)*sqrt(c*x^2 + b*x))/c^5, -1/7680*(105*b^6*sqrt(-c)*ar
ctan(sqrt(c*x^2 + b*x)*sqrt(-c)/(c*x)) - (1280*c^6*x^5 + 1664*b*c^5*x^4 + 48*b^2*c^4*x^3 - 56*b^3*c^3*x^2 + 70
*b^4*c^2*x - 105*b^5*c)*sqrt(c*x^2 + b*x))/c^5]

________________________________________________________________________________________

giac [A]  time = 0.23, size = 108, normalized size = 0.81 \begin {gather*} -\frac {7 \, b^{6} \log \left ({\left | -2 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x}\right )} \sqrt {c} - b \right |}\right )}{1024 \, c^{\frac {9}{2}}} + \frac {1}{7680} \, \sqrt {c x^{2} + b x} {\left (2 \, {\left (4 \, {\left (2 \, {\left (8 \, {\left (10 \, c x + 13 \, b\right )} x + \frac {3 \, b^{2}}{c}\right )} x - \frac {7 \, b^{3}}{c^{2}}\right )} x + \frac {35 \, b^{4}}{c^{3}}\right )} x - \frac {105 \, b^{5}}{c^{4}}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(c*x^2+b*x)^(3/2),x, algorithm="giac")

[Out]

-7/1024*b^6*log(abs(-2*(sqrt(c)*x - sqrt(c*x^2 + b*x))*sqrt(c) - b))/c^(9/2) + 1/7680*sqrt(c*x^2 + b*x)*(2*(4*
(2*(8*(10*c*x + 13*b)*x + 3*b^2/c)*x - 7*b^3/c^2)*x + 35*b^4/c^3)*x - 105*b^5/c^4)

________________________________________________________________________________________

maple [A]  time = 0.05, size = 146, normalized size = 1.09 \begin {gather*} \frac {7 b^{6} \ln \left (\frac {c x +\frac {b}{2}}{\sqrt {c}}+\sqrt {c \,x^{2}+b x}\right )}{1024 c^{\frac {9}{2}}}-\frac {7 \sqrt {c \,x^{2}+b x}\, b^{4} x}{256 c^{3}}-\frac {7 \sqrt {c \,x^{2}+b x}\, b^{5}}{512 c^{4}}+\frac {7 \left (c \,x^{2}+b x \right )^{\frac {3}{2}} b^{2} x}{96 c^{2}}+\frac {7 \left (c \,x^{2}+b x \right )^{\frac {3}{2}} b^{3}}{192 c^{3}}+\frac {\left (c \,x^{2}+b x \right )^{\frac {5}{2}} x}{6 c}-\frac {7 \left (c \,x^{2}+b x \right )^{\frac {5}{2}} b}{60 c^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(c*x^2+b*x)^(3/2),x)

[Out]

1/6*x*(c*x^2+b*x)^(5/2)/c-7/60*b*(c*x^2+b*x)^(5/2)/c^2+7/96*b^2/c^2*(c*x^2+b*x)^(3/2)*x+7/192*b^3/c^3*(c*x^2+b
*x)^(3/2)-7/256*b^4/c^3*(c*x^2+b*x)^(1/2)*x-7/512*b^5/c^4*(c*x^2+b*x)^(1/2)+7/1024*b^6/c^(9/2)*ln((c*x+1/2*b)/
c^(1/2)+(c*x^2+b*x)^(1/2))

________________________________________________________________________________________

maxima [A]  time = 1.37, size = 144, normalized size = 1.07 \begin {gather*} -\frac {7 \, \sqrt {c x^{2} + b x} b^{4} x}{256 \, c^{3}} + \frac {7 \, {\left (c x^{2} + b x\right )}^{\frac {3}{2}} b^{2} x}{96 \, c^{2}} + \frac {{\left (c x^{2} + b x\right )}^{\frac {5}{2}} x}{6 \, c} + \frac {7 \, b^{6} \log \left (2 \, c x + b + 2 \, \sqrt {c x^{2} + b x} \sqrt {c}\right )}{1024 \, c^{\frac {9}{2}}} - \frac {7 \, \sqrt {c x^{2} + b x} b^{5}}{512 \, c^{4}} + \frac {7 \, {\left (c x^{2} + b x\right )}^{\frac {3}{2}} b^{3}}{192 \, c^{3}} - \frac {7 \, {\left (c x^{2} + b x\right )}^{\frac {5}{2}} b}{60 \, c^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(c*x^2+b*x)^(3/2),x, algorithm="maxima")

[Out]

-7/256*sqrt(c*x^2 + b*x)*b^4*x/c^3 + 7/96*(c*x^2 + b*x)^(3/2)*b^2*x/c^2 + 1/6*(c*x^2 + b*x)^(5/2)*x/c + 7/1024
*b^6*log(2*c*x + b + 2*sqrt(c*x^2 + b*x)*sqrt(c))/c^(9/2) - 7/512*sqrt(c*x^2 + b*x)*b^5/c^4 + 7/192*(c*x^2 + b
*x)^(3/2)*b^3/c^3 - 7/60*(c*x^2 + b*x)^(5/2)*b/c^2

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int x^2\,{\left (c\,x^2+b\,x\right )}^{3/2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(b*x + c*x^2)^(3/2),x)

[Out]

int(x^2*(b*x + c*x^2)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int x^{2} \left (x \left (b + c x\right )\right )^{\frac {3}{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(c*x**2+b*x)**(3/2),x)

[Out]

Integral(x**2*(x*(b + c*x))**(3/2), x)

________________________________________________________________________________________